If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.3q^2+2q-50=0
a = 0.3; b = 2; c = -50;
Δ = b2-4ac
Δ = 22-4·0.3·(-50)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8}{2*0.3}=\frac{-10}{0.6} =-16+0.4/0.6 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8}{2*0.3}=\frac{6}{0.6} =10 $
| 0.3^2+2q-50=0 | | K+3k=24 | | H+(18+h)=46 | | -4d-1=-9 | | 1/5(31-x)=1/2x | | 2/3(25-x)=1x+2 | | (B/2p)=5.77 | | 0.01(P-1)+0.05(p+4-3)=0.07 | | (x+8)=2(x+2) | | n/3+12=-24 | | (9x+77)+121=180 | | 9x+77+121=180 | | 84=-10r-36 | | (9x+2)+121=180 | | 35=5(n+20) | | −3=5(x−2) | | 2x^2+20x-528=0 | | 14x+56+8x-8=180 | | 5x-21=6x-29 | | 1/4f=6 | | 12x+4-6x=2(5x-2)- | | 2X^2+20x-750=0 | | 1.5(x-4)=3.5x-24 | | 14x+6=12x-+12 | | 2X^2+20x+750=0 | | y.12+5=-15 | | X^2+20x+750=0 | | X^2+20x+1400=0 | | 5y-2+y-6=-9y+10+6y+12 | | 7-3x=38 | | 3x+32x-1=7(5x+6) | | 7x+17x-7=6(4x+8) |